Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 27;43(15):2906-14.
doi: 10.1021/jm000028l.

Permanently charged chiral 1,4-dihydropyridines: molecular probes of L-type calcium channels. Synthesis and pharmacological characterization of methyl(omega-trimethylalkylammonium) 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate iodide, calcium channel antagonists

Affiliations

Permanently charged chiral 1,4-dihydropyridines: molecular probes of L-type calcium channels. Synthesis and pharmacological characterization of methyl(omega-trimethylalkylammonium) 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate iodide, calcium channel antagonists

R Peri et al. J Med Chem. .

Abstract

We report the synthesis of the single enantiomers of permanently charged dihydropyridine derivatives (DHPs with alkyl linker lengths of two and eight carbon atoms) and their activities on cardiac and neuronal L-type calcium channels. Permanently charged chiral 1,4-dihydropyridines and methyl (omega)-trimethylalkylammonium) 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate iodides were synthesized in high optical purities from (R)-(-) and (S)-(+)-1,4-dihydro-2,6-dimethyl-5-methoxycarbonyl-4-(3-nitrophenyl)-3-+ ++pyridinecarboxylic acid, obtained by resolution of racemic 1,4-dihydro-2,6-dimethyl-5-methoxycarbonyl-4-(3-nitrophenyl)-3-pyridi necarboxylic acid. Competition binding experiments with radioligand [3H]-(+)-PN200-110 and the block of whole cell barium currents through L-type calcium channels in GH4C1 cells show that the compounds with the eight-carbon alkyl linker optimally block the L-type Ca2+ channels, and that the S-enantiomer is more potent than the R-enantiomer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources