Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;89(3):1114-22.
doi: 10.1152/jappl.2000.89.3.1114.

Nasal resistance and flow resistive work of nasal breathing during exercise: effects of a nasal dilator strip

Affiliations
Free article

Nasal resistance and flow resistive work of nasal breathing during exercise: effects of a nasal dilator strip

J M Gehring et al. J Appl Physiol (1985). 2000 Sep.
Free article

Abstract

Using posterior rhinomanometry, we measured nasal airflow resistance (Rn) and flow-resistive work of nasal breathing (WONB), with an external nasal dilator strip (ENDS) and without (control), in 15 healthy adults (6 men, 9 women) during exclusive nasal breathing and graded (50-230 W) exercise on a cycle ergometer. ENDS decreased resting inspiratory and/or expiratory Rn (at 0.4 l/s) by >0.5 cmH(2)O. l(-1). s in 11 subjects ("responders"). Inspired ventilation (VI) increased with external work rate, but tended to be greater with ENDS. Inspiratory and expiratory Rn (at 0.4 l/s) decreased as VI increased but, in responders, tended to remain lower with ENDS. Inspiratory (but not expiratory) Rn at peak nasal airflow (Vn) increased as VI increased but, again, was lower with ENDS. At a VI of approximately 35 l/min, ENDS decreased flow limitation and hysteresis of the inspiratory transnasal pressure-flow curve. In responders, ENDS reduced inspiratory WONB per breath and inspiratory nasal power values during exercise. We conclude that ENDS stiffens the lateral nasal vestibule walls and, in responders, may reduce the energy required for nasal ventilation during exercise.

PubMed Disclaimer

Publication types