Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;89(3):1137-41.
doi: 10.1152/jappl.2000.89.3.1137.

Muscle afferent activity modulates bioassayable growth hormone in human plasma

Collaborators, Affiliations
Free article

Muscle afferent activity modulates bioassayable growth hormone in human plasma

G E McCall et al. J Appl Physiol (1985). 2000 Sep.
Free article

Abstract

Immunoassayable and bioassayable growth hormone responses to vibration-induced activation of muscle spindle afferents of the soleus (Sol) or tibialis anterior (TA) muscles were studied in 10 men. Subjects were supine while a 10-min vibration stimulus (100 Hz; 1.5-mm amplitude) was applied to the muscle, with each of the muscles tested on separate days. Blood samples were collected before, during, immediately after, and after 5 and 10 min of vibration. Plasma growth hormone concentrations were determined by radioimmunoassay (IGH) for all sampling periods and by bioassay (BGH; measurement of tibial epiphysial cartilage growth in hypophysectomized rats) for samples obtained before and immediately after vibration. Plasma IGH concentrations were similar at all time points during the Sol or TA experiments. After 10 min of muscle vibration, mean plasma BGH was elevated 94% [1,216 +/- 148 (SD) to 2, 362 +/- 487 microg/l; P = 0.0001] for TA and decreased 22% (1,358 +/- 155 to 1,058 +/- 311 microg/l; P = 0.09) for Sol. These data demonstrate that activation of TA muscle spindle afferents increases circulating BGH but not IGH. The absence of a similar vibration-induced BGH response for the Sol indicates a differential regulation of BGH release by these two predominantly slow muscles, perhaps related to their respective flexor and extensor functions. These data indicate that a muscle afferent-pituitary axis modulates the release of BGH, but not IGH, from the pituitary in humans and that this axis is muscle specific, similar to that observed in rats.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources