Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;10(3):383-98.
doi: 10.1081/BIP-100102501.

Linear mixed-effect multivariate adaptive regression splines applied to nonlinear pharmacokinetics data

Affiliations

Linear mixed-effect multivariate adaptive regression splines applied to nonlinear pharmacokinetics data

J M Gries et al. J Biopharm Stat. 2000 Aug.

Abstract

In a frequently performed pharmacokinetics study, different subjects are given different doses of a drug. After each dose is given, drug concentrations are observed according to the same sampling design. The goal of the experiment is to obtain a representation for the pharmacokinetics of the drug, and to determine if drug concentrations observed at different times after a dose are linear in respect to dose. The goal of this paper is to obtain a representation for concentration as a function of time and dose, which (a) makes no assumptions on the underlying pharmacokinetics of the drug; (b) takes into account the repeated measure structure of the data; and (c) detects nonlinearities in respect to dose. To address (a) we use a multivariate adaptive regression splines representation (MARS), which we recast into a linear mixed-effects model, addressing (b). To detect nonlinearity we describe a general algorithm that obtains nested (mixed-effect) MARS representations. In the pharmacokinetics application, the algorithm obtains representations containing time, and time and dose, respectively, with the property that the bases functions of the first representation are a subset of the second. Standard statistical model selection criteria are used to select representations linear or nonlinear in respect to dose. The method can be applied to a variety of pharmacokinetics (and pharmacodynamic) preclinical and phase I-III trials. Examples of applications of the methodology to real and simulated data are reported.

PubMed Disclaimer

LinkOut - more resources