Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug;21(6):393-9.
doi: 10.1055/s-2000-3830.

Lactate transport in rat sarcolemmal vesicles after a single bout of submaximal exercise

Affiliations

Lactate transport in rat sarcolemmal vesicles after a single bout of submaximal exercise

N Eydoux et al. Int J Sports Med. 2000 Aug.

Abstract

We investigated the effects of a single bout of non-exhaustive exercise (25 m x min(-1), 10% grade, for 30 min) on the initial rates of lactate uptake in rat skeletal muscle sarcolemmal vesicles and the monocarboxylate transporter 1 (MCT1) content in isolated hindlimb muscles in relation to the exercise-induced oxidative stress. The exercise led to a decrease in red gastrocnemius and red vastus lateralis muscle glycogen content by 74% and 83%, respectively, and an increase in blood lactate concentration from 1.67 +/- 0.15 to 3.44 +/- 0.47 mM (p < 0.05). Initial rates of lactate uptake were measured in zero-trans conditions, at pH 7.4, for 1, 10, 30 and 100 mM external lactate concentrations. Lactate transport capacity was significantly decreased at 1 mM in the exercised group (p < 0.05), while a non-significant trend towards an increase was observed at 10, 30 and 100 mM. We failed to obtain any change in soleus, red tibialis anterior and white gastrocnemius muscle MCT1 content (p>0.05), and no evidence of exercise-induced oxidative stress in terms of muscle malondialdehyde content and glutathione peroxidase and superoxide dismutase activities was observed after the 30 min exercise bout. These results indicate that a single bout of submaximal exercise, which did not induce an increase in muscle MCT1 content and apparent oxidative stress, decreased lactate transport capacity at low physiological concentration. Although the changes are small and independent of a MCT1-facilitated lactate transport regulation, we suggest that another MCT isoform with different kinetic properties from MCT1 could be present in the sarcolemma and responsible for lactate exchange alterations.

PubMed Disclaimer

LinkOut - more resources