Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;28(4):353-7.

Expression of recombinant human type I-III collagens in the yeast pichia pastoris

Affiliations
  • PMID: 10961918
Review

Expression of recombinant human type I-III collagens in the yeast pichia pastoris

J Myllyharju et al. Biochem Soc Trans. 2000.

Abstract

An efficient expression system for recombinant human collagens will have numerous scientific and medical applications. However, most recombinant systems are unsuitable for this purpose, as they do not have sufficient prolyl 4-hydroxylase activity. We have developed methods for producing the three major fibril-forming human collagens, types I, II and III, in the methylotrophic yeast Pichia pastoris. These methods are based on co-expression of procollagen polypeptide chains with the alpha- and beta-subunits of prolyl 4-hydroxylase. The triple-helical type-I, -II and-III procollagens were found to accumulate predominantly within the endoplasmic reticulum of the yeast cells and could be purified from the cell lysates by a procedure that included a pepsin treatment to convert the procollagens into collagens and to digest most of the non-collagenous proteins. All the purified recombinant collagens were identical in 4-hydroxyproline content with the corresponding non-recombinant human proteins, and all the recombinant collagens formed native-type fibrils. The expression levels using single-copy integrants and a 2 litre bioreactor ranged from 0.2 to 0.6 g/l depending on the collagen type.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources