Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;147(1-2):221-41.
doi: 10.1016/s0378-5955(00)00133-7.

Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness

Affiliations

Plasticity in central representations in the inferior colliculus induced by chronic single- vs. two-channel electrical stimulation by a cochlear implant after neonatal deafness

P A Leake et al. Hear Res. 2000 Sep.

Abstract

The goal of this research is to examine the functional consequences of patterned electrical stimulation delivered by a cochlear implant in the deafened developing auditory system. In previous electrophysiological experiments conducted in the inferior colliculus (IC), we have demonstrated that the precise cochleotopic organization of the central nucleus (ICC) develops normally in neonatally deafened unstimulated cats and is unaltered despite the lack of normal auditory input during development. However, these studies also showed that chronic electrical stimulation delivered at a single intracochlear location by one bipolar channel of a cochlear implant induces significant expansion of the central representation of the stimulated cochlear sector and degrades the cochleotopic organization of the IC. This report presents additional data from a new experimental series of neonatally deafened cats that received chronic stimulation on two adjacent bipolar intracochlear channels of a cochlear implant. Results suggest that competing inputs elicited by electrical stimulation delivered by two adjacent channels can maintain the selective representations of each activated cochlear sector within the central auditory system and prevent the expansion seen after single-channel stimulation. Alternating stimulation of two channels and use of highly controlled electrical signals may be particularly effective in maintaining or even sharpening selectivity of central representations of stimulated cochlear sectors. In contrast, simultaneous stimulation using two channels of a model analog cochlear implant processor in one experimental animal failed to maintain channel selectivity and resulted in marked expansion and fusion of the central representations of the stimulated channels. This potentially important preliminary result suggests that under some conditions the central auditory system may be unable to discriminate simultaneous, overlapping inputs from adjacent cochlear implant channels as distinct.

PubMed Disclaimer

Publication types