Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul 1;29(1):26-33.
doi: 10.1016/s0891-5849(00)00287-2.

Reactions of e(-)(aq), CO(2)(*)(-), HO(*), O(2)(*)(-) and O(2)((1)delta(g)) with a dendro[60]fullerene and C(60)[C(COOH)(2)](n) (n = 2-6)

Affiliations

Reactions of e(-)(aq), CO(2)(*)(-), HO(*), O(2)(*)(-) and O(2)((1)delta(g)) with a dendro[60]fullerene and C(60)[C(COOH)(2)](n) (n = 2-6)

R V Bensasson et al. Free Radic Biol Med. .

Abstract

Using pulse radiolysis and laser flash photolysis, we have investigated the reactions of the deleterious species, e(-)(aq), HO&z.rad;, O(2)(*)(-) and O(2)((1)Delta(g)) with 10 water-soluble cyclopropyl-fused C(60) derivatives including a mono-adduct dendro[60]fullerene (d) and C(60) derivatives based on C(60)[C(COOH)(2)](n=2-6), some of which are known to be neuroprotective in vivo. The rate constants for reactions of e(-)(aq) and HO&z.rad; lie in the range 0.5-3.3 x 10(10) M(-1) s(-1). The d and bis-adduct monoanion radicals display sharp absorption peaks around 1000 nm (epsilon = 7 000-11 500 M(-1) cm(-1)); the anions of the tris-, tetra-, and penta-adduct derivatives have broader, weaker absorptions. The monohydroxylated radicals have their most intense absorption maxima around 390-440 nm (epsilon = 1000-3000 M(-1) cm(-1)). The anion and hydroxylated radical absorption spectra display a blue-shift as the number of addends increases. The radical anions react with oxygen (k approximately 10(7)-10(9) M(-1) s(-1)). The reaction of O(2)(*)(-) with the C(60) derivatives does not occur via an electron transfer. The rate constants for singlet oxygen reaction with the dendrofullerene and eee-derivative in D(2)O at pH 7.4 are k approximately 7 x 10(7) and approximately 2 x 10(7) M(-1) s(-1) respectively, in contrast to approximately 1.2 x 10(5) M(-1) s(-1) for the reaction with C(60) in C(6)D(6). The large acceleration of the rates for electron reduction and singlet oxygen reactions in water is due to a solvophobic process.

PubMed Disclaimer

Publication types

LinkOut - more resources