Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 23;39(11):1959-73.
doi: 10.1016/s0028-3908(00)00069-1.

The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea

Affiliations

The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea

J Ruel et al. Neuropharmacology. .

Abstract

The role of AMPA receptors in cochlear synaptic transmission and excitotoxicity was investigated by comparing the actions of a selective AMPA antagonist GYKI 53784 (LY303070) with additional AMPA/kainate antagonists, GYKI 52466 and DNQX, and the NMDA antagonist, D-AP5, in several electrophysiological, neurotoxicological and histochemical tests. GYKI 53784 had the same potency as DNQX and was 10 times more potent than GYKI 52466 in reducing auditory nerve activity. The NMDA antagonist D-AP5 had no effect on auditory nerve activity. When single-fiber activity was blocked with GYKI 53784, the effects of AMPA or kainate were also antagonized. GYKI 53784 completely blocked excitotoxicity (i.e. destruction of the afferent nerve endings) induced by AMPA and kainate. The histochemical detection of Co(2+) uptake was used to study Ca(2+) influx within the primary auditory nerve cells. Application of AMPA induced no significant Co(2+) uptake into the cells, suggesting that these receptors normally have a very low permeability to Ca(2+). Application of kainate induced significant Co(2+) uptake that was blocked by the AMPA receptor antagonist GYKI 53784 suggesting that kainate stimulated Ca(2+) entry through AMPA receptor channels. Results suggest that AMPA-preferring receptors are functionally located at the sensory cell-afferent synapse whereas NMDA and kainate receptors are not.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources