Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 23;39(11):2067-74.
doi: 10.1016/s0028-3908(00)00033-2.

Moclobemide reduces intracellular pH and neuronal activity of CA3 neurones in guinea-pig hippocampal slices-implication for its neuroprotective properties

Affiliations

Moclobemide reduces intracellular pH and neuronal activity of CA3 neurones in guinea-pig hippocampal slices-implication for its neuroprotective properties

U Bonnet et al. Neuropharmacology. .

Abstract

Mechanisms underlying the neuroprotective properties of the weak MAO-A inhibitor moclobemide are not understood. Increasing evidence suggests that a moderate increase in intracellular free protons may contribute to neuroprotective properties due to a proton-mediated decrease in neuronal activity. Therefore, we studied effects of 10-700 microM moclobemide (i) on the intracellular pH (pH(i)) of BCECF-AM loaded CA3 neurones as well as (ii) on spontaneous action potentials and epileptiform activity (induced by bicuculline-methiodide, caffeine, or 4-aminopyridine) of CA3 neurones in the stratum pyramidale. Moclobemide-concentrations of > or = 300 microM reversibly reduced the steady-state pH(i) by up to 0. 25 pH-units within 5-20 min. Simultaneously, the frequency of spontaneous action potentials and epileptiform discharges became depressed. Moclobemide also abolished 4-aminopyridine-induced GABA-mediated hyperpolarisations suggesting that the inhibitory and acidifying effects of moclobemide do not result from an amplification of the GABA system. The stronger MAO-A inhibitors clorgyline or pargyline (both 10 microM) mimicked the moclobemide-effects. Investigating effects on pH(i)-regulation we found that 700 microM moclobemide impaired the recovery from intracellular acidification elicited by an ammonium prepulse which demonstrates an impairment of transmembrane acid extrusion. We suggest that the latter effect is responsible for the moderate decrease in the steady-state pH(i) which in turn reduced neuronal activity. This mechanism may substantially contribute to the neuroprotective properties of moclobemide.

PubMed Disclaimer

MeSH terms

LinkOut - more resources