Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:200:101-41.
doi: 10.1016/s0074-7696(00)00003-6.

The Chlorella hexose/H(+)-symporters

Affiliations
Review

The Chlorella hexose/H(+)-symporters

W Tanner. Int Rev Cytol. 2000.

Abstract

The physiology, molecular biology, and biochemistry of the inducible hexose uptake protein of Chlorella kessleri is reviewed. The protein encoded by the HUP1 gene is the most intensively studied membrane transporter of plants. Responsible for substrate accumulation up to 1500-fold, it translocates one proton together with one hexose, and the cell invests 1 ATP per sugar transported. Kinetics suggest that substrate accumulation is mainly brought about by a large delta Km (Kminside >> Kmoutside). The HUP1 protein (534aa) consists of 12 transmembrane helices of which at least helices I, V, VII, and XI interact with the sugar during translocation and participate in lining the transport path through the membrane. The helix packing might very well be identical to the one suggested for the E. coli lac permease, although the mechanism for transport and proton coupling that has been suggested for lac permease (Kaback, 1997) certainly does not hold for the Chlorella symporter; both are distantly related members, however, of the MFS-family of transporters. HUP1 has been functionally expressed in Schizosaccharomyces pombe, Saccharomyces cerevisiae, Escherichia coli, Volvox carteri, and in Xenopus oocytes.

PubMed Disclaimer

Publication types

MeSH terms

Substances