GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins
- PMID: 10966476
- DOI: 10.1146/annurev.biochem.69.1.795
GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins
Abstract
GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on G subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins (phospholipase C-¿, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with G¿ or with G¿5 through an endogenous G-like domain, and by interaction with multiple other proteins.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
