Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;7(9):744-8.
doi: 10.1038/78966.

Structural basis of dimerization, coactivator recognition and MODY3 mutations in HNF-1alpha

Affiliations

Structural basis of dimerization, coactivator recognition and MODY3 mutations in HNF-1alpha

R B Rose et al. Nat Struct Biol. 2000 Sep.

Abstract

Maturity-onset diabetes of the young type 3 (MODY3) results from mutations in the transcriptional activator hepatocyte nuclear factor-1alpha (HNF-1alpha). Several MODY3 mutations target the HNF-1alpha dimerization domain (HNF-p1), which binds the coactivator, dimerization cofactor of HNF-1 (DCoH). To define the mechanism of coactivator recognition and the basis for the MODY3 phenotype, we determined the cocrystal structure of the DCoH-HNF-p1 complex and characterized biochemically the effects of MODY3 mutations in HNF-p1. The DCoH-HNF-p1 complex comprises a dimer of dimers in which HNF-p1 forms a unique four-helix bundle. Through rearrangements of interfacial side chains, a single, bifunctional interface in the DCoH dimer mediates both HNF-1alpha binding and formation of a competing, transcriptionally inactive DCoH homotetramer. Consistent with the structure, MODY3 mutations in HNF-p1 reduce activator function by two distinct mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources