Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998;3(4):267-76.

Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue

Affiliations
  • PMID: 10970127

Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue

P Decherchi et al. J Peripher Nerv Syst. 1998.

Abstract

Although previous experiments with a partially similar objective have been described in dogs, cats and rabbits, the purpose of this study was to identify and characterize mechanosensitive and chemosensitive muscle afferents in the anaesthetized rat since it is a widely used laboratory animal. The peroneal nerve innervating the tibialis anterior muscle was studied. Measurement of conduction velocities from compound action nerve potentials evoked by peripheral nerve stimulation allowed identification of group I-II (10.79+/-1.02 m/s), group III (2.96+/-0.58 m/s) and group IV (0.46+/-0.07 m/s) afferent fibers. Computation of the different compound potential areas showed that afferents I and II arising from spindles and tendon organs represented 9.65+/-2.2%, whereas afferents III and IV arising from free nerve endings in muscle represented 90.35+/-2.2% (III, 46.66+/-2.71% and IV, 43.69+/-2.52%). Action potentials were recorded from teased nerve filaments. Mechanical tendon vibrations (10 to 90 Hz) were used to activate mechanoreceptors. Peak increase in afferent discharge (fimpulses) was measured at 50 Hz (n = 12/19 units) or 70 Hz (n = 7/19 units). Intra-arterial bolus injections of different concentrations of potassium chloride (KCl: 1 to 20 mM) or lactic acid (LA: 0.5 to 3 mM) elicited marked activation of III and IV afferents (n = 124). Enhancement of fimpulses was not proportional to the increase in [KCl] or [LA]. Activation of afferents plateaued when [KCl] was equal or greater than 5 mM while fimpulses peaked, then decreased, when [LA] was 1 mM. Muscle fatigue induced by direct electrical muscle stimulation (EIF) markedly activated group III-IV (n = 17/18) afferents (176.9+/-29.7% of control) which persisted for the 3 minutes of recovery from fatigue. Maximal fimpulses increases in response to LA (+67%) and KCl (+46.9%) injections and to EIF (+76.9%) were similar. This procedure for characterizing the functional properties of sensory nerve endings in a skeletal muscle may be used to assess further changes in sensory muscle paths in experimental rodent pathophysiological systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources