Transport, capture and exocytosis of single synaptic vesicles at active zones
- PMID: 10972279
- DOI: 10.1038/35022500
Transport, capture and exocytosis of single synaptic vesicles at active zones
Abstract
To sustain high rates of transmitter release, synaptic terminals must rapidly re-supply vesicles to release sites and prime them for exocytosis. Here we describe imaging of single synaptic vesicles near the plasma membrane of live ribbon synaptic terminals. Vesicles were captured at small, discrete active zones near the terminal surface. An electric stimulus caused them to undergo rapid exocytosis, seen as the release of a fluorescent lipid from the vesicles into the plasma membrane. Next, vesicles held in reserve about 20 nm from the plasma membrane advanced to exocytic sites, and became release-ready 250 ms later. Apparently a specific structure holds vesicles at an active zone to bring v-SNAREs and t-SNAREs, the proteins that mediate vesicle fusion, within striking distance of each other, and then allows the triggered movement of such vesicles to the plasma membrane.
Comment in
-
Vesicle fiesta at the synapse.Nature. 2000 Aug 24;406(6798):835-6. doi: 10.1038/35022674. Nature. 2000. PMID: 10972270 No abstract available.
Similar articles
-
Different roles of ribbon-associated and ribbon-free active zones in retinal bipolar cells.Nat Neurosci. 2007 Oct;10(10):1268-76. doi: 10.1038/nn1963. Epub 2007 Sep 9. Nat Neurosci. 2007. PMID: 17828257
-
Direct Observation of Vesicle Transport on the Synaptic Ribbon Provides Evidence That Vesicles Are Mobilized and Prepared Rapidly for Release.J Neurosci. 2020 Sep 23;40(39):7390-7404. doi: 10.1523/JNEUROSCI.0605-20.2020. Epub 2020 Aug 26. J Neurosci. 2020. PMID: 32847965 Free PMC article.
-
Vesicle association and exocytosis at ribbon and extraribbon sites in retinal bipolar cell presynaptic terminals.Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4922-7. doi: 10.1073/pnas.0709067105. Epub 2008 Mar 13. Proc Natl Acad Sci U S A. 2008. PMID: 18339810 Free PMC article.
-
Molecular organization of the presynaptic active zone.Cell Tissue Res. 2006 Nov;326(2):379-91. doi: 10.1007/s00441-006-0244-y. Epub 2006 Jul 25. Cell Tissue Res. 2006. PMID: 16865347 Review.
-
SV2 frustrating exocytosis at the semi-diffusor synapse.Synapse. 2009 Apr;63(4):319-38. doi: 10.1002/syn.20610. Synapse. 2009. PMID: 19140166 Review.
Cited by
-
Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion.J Cell Biol. 2011 Dec 26;195(7):1159-70. doi: 10.1083/jcb.201104079. Epub 2011 Dec 19. J Cell Biol. 2011. PMID: 22184197 Free PMC article.
-
Dynamics of Neuromuscular Transmission Reproduced by Calcium-Dependent and Reversible Serial Transitions in the Vesicle Fusion Complex.Front Synaptic Neurosci. 2022 Feb 15;13:785361. doi: 10.3389/fnsyn.2021.785361. eCollection 2021. Front Synaptic Neurosci. 2022. PMID: 35242023 Free PMC article.
-
Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses.J Neurosci. 2002 Mar 1;22(5):1608-17. doi: 10.1523/JNEUROSCI.22-05-01608.2002. J Neurosci. 2002. PMID: 11880491 Free PMC article.
-
Single-molecule biophysics: at the interface of biology, physics and chemistry.J R Soc Interface. 2008 Jan 6;5(18):15-45. doi: 10.1098/rsif.2007.1021. J R Soc Interface. 2008. PMID: 17519204 Free PMC article. Review.
-
Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size.Proc Natl Acad Sci U S A. 2002 May 14;99(10):7124-9. doi: 10.1073/pnas.102645099. Epub 2002 May 7. Proc Natl Acad Sci U S A. 2002. PMID: 11997474 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources