Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep;27(9):727-33.
doi: 10.1046/j.1440-1681.2000.03329.x.

Activity of the Na+/H+ exchanger contributes to cardiac damage following ischaemia and reperfusion

Affiliations
Review

Activity of the Na+/H+ exchanger contributes to cardiac damage following ischaemia and reperfusion

D G Allen et al. Clin Exp Pharmacol Physiol. 2000 Sep.

Abstract

1. The present review considers the evidence that Na+-H+ exchange activity contributes to cardiac damage following ischaemia and reperfusion. The basic mechanism involved is that protons are produced during ischaemia and leave the myocytes on the Na+/H+ exchanger during either ischaemia and/or reperfusion. The resulting elevation of [Na+]i causes Ca2+ loading through the Na+/Ca2+ exchanger and the elevated [Ca2+]i is thought to lead to myocardial damage. 2. Inhibition of the Na+/H+ exchanger during ischaemia and/or reperfusion produces a substantial cardioprotective effect by blocking the damage caused by the coupled exchanger mechanism described above. Preconditioning also produces a cardioprotective effect and the evidence that this also involves the Na+/H+ exchanger is reviewed. 3. The intracellular mechanisms associated with ischaemic damage and preconditioning are of great interest because they may provide targets for potential therapeutic interventions. The intracellular regulation of the Na+/H+ exchanger appears to be an important component of these pathways and may become a focus for therapeutic approaches.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources