The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways
- PMID: 10972794
- DOI: 10.1046/j.1365-2958.2000.02004.x
The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways
Abstract
Lateral gene transfer (LGT) is a major force in microbial genome evolution. Here, we present an overview of lateral transfers affecting genes involved in isopentenyl diphosphate (IPP) synthesis. Two alternative metabolic pathways can synthesize this universal precursor of isoprenoids, the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway and the mevalonate (MVA) pathway. We have surveyed recent genomic data and the biochemical literature to determine the distribution of the genes composing these pathways within the bacterial domain. The scattered distribution observed is incompatible with a simple scheme of vertical transmission. LGT (among and between bacteria, archaea and eukaryotes) more parsimoniously explains many features of this pattern. This alternative scenario is supported by phylogenetic analyses, which unambiguously confirm several cases of lateral transfer. Available biochemical data allow the formulation of hypotheses about selective pressures favouring transfer. The phylogenetic diversity of the organisms involved and the range of possible causes and effects of these transfer events make the IPP biosynthetic pathways an ideal system for studying the evolutionary role of LGT.
Similar articles
-
Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life.Mol Biol Evol. 2011 Jan;28(1):87-99. doi: 10.1093/molbev/msq177. Epub 2010 Jul 22. Mol Biol Evol. 2011. PMID: 20651049
-
Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids.Planta. 2001 Feb;212(3):416-23. doi: 10.1007/s004250000409. Planta. 2001. PMID: 11289606
-
Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway.Genome Res. 2000 Oct;10(10):1468-84. doi: 10.1101/gr.145600. Genome Res. 2000. PMID: 11042147
-
Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.Acta Biochim Pol. 2001;48(3):663-72. Acta Biochim Pol. 2001. PMID: 11833775 Review.
-
Lateral gene transfer between prokaryotes and eukaryotes.Exp Cell Res. 2017 Sep 15;358(2):421-426. doi: 10.1016/j.yexcr.2017.02.009. Epub 2017 Feb 9. Exp Cell Res. 2017. PMID: 28189637 Free PMC article. Review.
Cited by
-
A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis.Sci Rep. 2016 Nov 8;6:36379. doi: 10.1038/srep36379. Sci Rep. 2016. PMID: 27821871 Free PMC article.
-
Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen).Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4413-8. doi: 10.1073/pnas.0400902101. Epub 2004 Mar 22. Proc Natl Acad Sci U S A. 2004. PMID: 15070732 Free PMC article.
-
Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes.BMC Evol Biol. 2003 Jun 23;3:14. doi: 10.1186/1471-2148-3-14. Epub 2003 Jun 23. BMC Evol Biol. 2003. PMID: 12820901 Free PMC article.
-
The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers.Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):933-8. doi: 10.1073/pnas.0407360102. Epub 2005 Jan 3. Proc Natl Acad Sci U S A. 2005. PMID: 15630092 Free PMC article.
-
The evolution of gene collectives: How natural selection drives chemical innovation.Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4601-8. doi: 10.1073/pnas.0709132105. Epub 2008 Jan 23. Proc Natl Acad Sci U S A. 2008. PMID: 18216259 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources