Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;37(5):995-1004.
doi: 10.1046/j.1365-2958.2000.02022.x.

A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production

Affiliations
Free article

A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production

B Aigle et al. Mol Microbiol. 2000 Sep.
Free article

Abstract

Antibiotic production in streptomycetes generally occurs in a growth phase-dependent and developmentally co-ordinated manner, and is subject to pathway-specific and pleiotropic control. Streptomyces coelicolor A3(2) produces at least four chemically distinct antibiotics, including actinorhodin (Act) and undecylprodigiosin (Red). afsB mutants of S. coelicolor are deficient in the production of both compounds and in the synthesis of a diffusible gamma-butyrolactone, SCB1, that can elicit precocious Act and Red production. Clones encoding the principal and essential sigma factor (sigmaHrdB) of S. coelicolor restored Act and Red production in the afsB mutant BH5. A highly conserved glycine (G) at position 243 of sigmaHrdB was shown to be replaced by aspartate (D) in BH5. Replacement of G243 by D in the afsB+ strain M145 reproduced the afsB phenotype. The antibiotic deficiency correlated with reduced transcription of actII-ORF4 and redD, pathway-specific regulatory genes for Act and Red production respectively. Exogenous addition of SCB1 to the G-243D mutants failed to restore Act and Red synthesis, indicating that loss of antibiotic production was not a result of the deficiency in SCB1 synthesis. The G-243D substitution, which lies in the highly conserved 1.2 region of undefined function, had no effect on growth rate or morphological differentiation, and appears specifically to affect antibiotic production.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources