Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 8;876(1-2):131-40.
doi: 10.1016/s0006-8993(00)02625-1.

Diazepam-potentiated [3H]phenytoin binding is associated with peripheral-type benzodiazepine receptors and not with voltage-dependent sodium channels

Affiliations

Diazepam-potentiated [3H]phenytoin binding is associated with peripheral-type benzodiazepine receptors and not with voltage-dependent sodium channels

J Francis et al. Brain Res. .

Abstract

In the presence of diazepam, [3H]phenytoin binds with high affinity to brain membranes. The present experiments examined whether this high affinity [3H]phenytoin-binding site co-localized with the standard [3H]phenytoin-binding site on the voltage-dependent sodium channel (VDSC). Veratridine, a pharmacological activator of the voltage-dependent sodium channel, that inhibits standard [3H]phenytoin binding, failed to affect the high affinity diazepam-potentiated [3H]phenytoin binding in brain membranes, suggesting that the potentiated binding interaction resides at a site distinct from the voltage-dependent sodium channel. This possibility was confirmed by anion exchange chromatography of digitonin-solubilized rat brain membranes, as diazepam-potentiated high affinity [3H]phenytoin binding eluted in column fractions that were distinct from [3H]saxitoxin-defined voltage-dependent sodium channels. To examine whether diazepam-potentiated [3H]phenytoin binding might be associated with other 'classic' benzodiazepine receptor sites, we tested whether specific ligands for benzodiazepine receptors would either produce or block potentiated [3H]phenytoin binding. Neither agonists, nor antagonists, of the high affinity central-type benzodiazepine receptor affected potentiated [3H]phenytoin binding, suggesting that the high affinity potentiated binding site is not likely associated with central benzodiazepine receptors. Peripheral-type benzodiazepine receptor agonists, however, did potentiate [3H]phenytoin binding, and a specific receptor antagonist (PK11195) attenuated the potentiation seen with diazepam. Overall, these data illustrate that [3H]phenytoin interacts with a novel site in brain membranes that is distinct from the voltage-dependent sodium channel and is allosterically revealed by peripheral-type, but not central-type, benzodiazepine receptor agonists.

PubMed Disclaimer

Similar articles

LinkOut - more resources