Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase
- PMID: 1097393
- PMCID: PMC246176
- DOI: 10.1128/jb.122.3.1189-1199.1975
Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase
Abstract
Genetic studies show that Escherichia coli has three enzymes capable of phosphorylating glucose: soluble adenosine 5'-triphosphate-dependent glucokinase, which plays only a minor role in glucose metabolism; an enzyme II, called glucosephosphotransferase, with high specificity for the D-glucose configuration; and another enzyme II, called mannosephosphotransferase, with broader specificity. The former enzyme II is active on glucose and methyl-alpha-glucopyranoside, whereas the latter is active on D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, and D-mannosamine. Mutations leading to loss of glucosephosphotransferase activity and designated by the symbol gpt are between the purB and pyrC markers in a locus previously called cat. The locus of mutations to loss of mannosephosphotransferase, mpt, is between the eda and fadD genes. Mutations to loss of glucokinase, glk, are between the ptsI and dsd genes.
Similar articles
-
Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.J Biol Chem. 1976 Nov 10;251(21):6584-97. J Biol Chem. 1976. PMID: 789368
-
Regulation of fructose uptake by glucose in Escherichia coli.J Gen Microbiol. 1975 Sep;90(1):157-68. doi: 10.1099/00221287-90-1-157. J Gen Microbiol. 1975. PMID: 1100775
-
Genetic analysis of succinate utilization in enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.J Bacteriol. 1975 Oct;124(1):252-61. doi: 10.1128/jb.124.1.252-261.1975. J Bacteriol. 1975. PMID: 170246 Free PMC article.
-
Genetic analysis of carbohydrate transport-deficient mutants of Salmonella typhimurium.J Bacteriol. 1969 Jan;97(1):250-5. doi: 10.1128/jb.97.1.250-255.1969. J Bacteriol. 1969. PMID: 4884816 Free PMC article.
-
Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system.Annu Rev Genet. 1976;10:341-59. doi: 10.1146/annurev.ge.10.120176.002013. Annu Rev Genet. 1976. PMID: 189682 Review. No abstract available.
Cited by
-
Conversion of glucose-xylose mixtures to pyruvate using a consortium of metabolically engineered Escherichia coli.Eng Life Sci. 2017 Oct 16;18(1):40-47. doi: 10.1002/elsc.201700109. eCollection 2018 Jan. Eng Life Sci. 2017. PMID: 32624859 Free PMC article.
-
Genetic mapping in Escherichia coli of tmk, the locus for dTMP kinase.J Bacteriol. 1986 Dec;168(3):1457-8. doi: 10.1128/jb.168.3.1457-1458.1986. J Bacteriol. 1986. PMID: 3023302 Free PMC article.
-
Expression of the Escherichia coli pmi gene, encoding phosphomannose-isomerase in Zymomonas mobilis, leads to utilization of mannose as a novel growth substrate, which can be used as a selective marker.Appl Environ Microbiol. 1996 Nov;62(11):4155-61. doi: 10.1128/aem.62.11.4155-4161.1996. Appl Environ Microbiol. 1996. PMID: 8900006 Free PMC article.
-
Cloning of the glucokinase gene in Escherichia coli B.J Bacteriol. 1983 Nov;156(2):922-5. doi: 10.1128/jb.156.2.922-925.1983. J Bacteriol. 1983. PMID: 6313627 Free PMC article.
-
Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity.J Bacteriol. 1984 Feb;157(2):622-6. doi: 10.1128/jb.157.2.622-626.1984. J Bacteriol. 1984. PMID: 6319370 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous