Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;35(4 Suppl 2):S37-40.
doi: 10.1097/00005344-200000002-00009.

Vascular effects of endothelin-1 in essential hypertension: relationship with cyclooxygenase-derived endothelium-dependent contracting factors and nitric oxide

Affiliations
Review

Vascular effects of endothelin-1 in essential hypertension: relationship with cyclooxygenase-derived endothelium-dependent contracting factors and nitric oxide

S Taddei et al. J Cardiovasc Pharmacol. 2000.

Abstract

Endothelium plays a primary role in the local modulation of vascular function and structure by the production and release of several substances including nitric oxide and endothelins (ET). Nitric oxide is a labile substance produced from the catabolism of L-arginine and not only causes vessel relaxation, but also inhibits platelet aggregation, smooth muscle cell proliferation, monocyte adhesion, adhesion molecules expression and endothelin-1 (ET-1) production. Endothelium-derived ET-1 is a potent vasoconstrictor and has inotropic and mitogenic properties. ET-1 acts through smooth muscle ET(A) and ET(B) receptors, which mainly mediate vasoconstriction, and endothelial ET(B) receptors, which oppose ET(A)- and ET(B)-mediated vasoconstriction by stimulating nitric oxide formation. Both nitric oxide and ET-1 play a crucial role in the cardiovascular physiology and an alteration of these systems can be a promoter of or be associated with most cardiovascular diseases. Essential hypertension is a pathological condition characterized by endothelial dysfunction. In hypertensive patients nitric oxide availability is impaired because of the production of cyclooxygenase-derived vasoconstrictor substances. The latter may also mediate the vasoconstrictor response to exogenous ET-1 because in forearm circulation of essential hypertensives, but not of normotensive controls, the ET-1-induced vasoconstriction is significantly blunted by intrabrachial indomethacin. Therefore, in normotensive subjects and essential hypertensives the vasoconstrictor effect of ET-1 seems to be dependent on different mechanisms. Moreover, in the peripheral circulation of normotensive subjects, where tonic nitric oxide production is preserved, unselective ET(A/B), receptor blockade by TAK-044 causes a very modest degree of vasodilation. In contrast in essential hypertensives, where the tonic nitric oxide production is reduced, the vasodilating effect of TAK-044 is more evident, indicating that the predominant vascular effect of endogenous ET-1 is the vasoconstriction. A possible explanation for this finding, in addition to an increased production of the peptide, could be related to a reduced ET(B) receptor-mediated nitric oxide activation. These peculiar aspects of the role of ET-1 in essential hypertension could have physiopathological relevance.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms