Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct 9;426(1):106-16.

Simultaneous intrastriatal and intranigral dopaminergic grafts in the parkinsonian rat model: role of the intranigral graft

Affiliations
  • PMID: 10980486

Simultaneous intrastriatal and intranigral dopaminergic grafts in the parkinsonian rat model: role of the intranigral graft

K A Baker et al. J Comp Neurol. .

Abstract

The current transplantation strategy in experimental and clinical Parkinson's disease (PD) has been to place nigral dopaminergic grafts not in their ontogenic site (substantia nigra) but in their target area (striatum). Although intrastriatal dopaminergic grafts are capable of reinnervating the striatum, they fail to reinnervate the nigra, which may be an important factor limiting the efficacy of fetal tissue transplantation in parkinsonian patients. We have previously shown that simultaneous intrastriatal and intranigral dopaminergic grafts (double grafts) may provide a more complete restoration of the nigrostriatal circuitry (Mendez et al. [1996] J Neurosci 16:7216-7227; Mendez and Hong [1997] Brain Res 778:194-205). In the present study, we investigated the contribution of the intranigral graft to functional recovery in double-grafted hemiparkinsonian rats. Twenty Wistar rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway were divided into two groups and received either double grafts (n = 10) or intrastriatal grafts alone (n = 10). Following transplantation, both intrastriatally and double-grafted animals had a significant decrease in rotational behavior. However, only animals with double grafts exhibited a significant increase in contralateral adjusting step performance. The intranigral graft was subsequently lesioned by a second 6-OHDA injection. Following the second lesion, animals with double grafts exhibited a significant reversal of rotational behavior and a 51% reduction in contralateral adjusting step performance. The reversal in functional recovery correlated with a significant loss of intranigral grafted neurons. These results suggest that the intranigral graft has an important role in the functional recovery of double-grafted animals. Restoration of dopaminergic innervation to both the nigra and the striatum may be crucial for optimizing graft efficacy and may be a superior strategy in neural transplantation for PD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources