Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;37(1):34-44.

Conformational features of a hexapeptide model Ac-TGAAKA-NH2 corresponding to a hydrated alpha helical segment from glyceraldehyde 3-phosphate dehydrogenase: implications for the role of turns in helix folding

Affiliations
  • PMID: 10983411

Conformational features of a hexapeptide model Ac-TGAAKA-NH2 corresponding to a hydrated alpha helical segment from glyceraldehyde 3-phosphate dehydrogenase: implications for the role of turns in helix folding

Y U Sasidhar et al. Indian J Biochem Biophys. 2000 Feb.

Abstract

Recent analysis of alpha helices in protein crystal structures, available in literature, revealed hydrated alpha helical segments in which, water molecule breaks open helix 5-->1 hydrogen bond by inserting itself, hydrogen bonds to both C=O and NH groups of helix hydrogen bond without disrupting the helix hydrogen bond, and hydrogen bonds to either C=O or NH of helix hydrogen bond. These hydrated segments display a variety of turn conformations and are thought to be 'folding intermediates' trapped during folding-unfolding of alpha helices. A role for reverse turns is implicated in the folding of alpha helices. We considered a hexapeptide model Ac-1TGAAKA6-NH2 from glyceraldehyde 3-phosphate dehydrogenase, corresponding to a hydrated helical segment to assess its role in helix folding. The sequence is a site for two 'folding intermediates'. The conformational features of the model peptide have been investigated by 1H 2D NMR techniques and quantum mechanical perturbative configuration interaction over localized orbitals (PCILO) method. Theoretical modeling largely correlates with experimental observations. Based upon the amide proton temperature coefficients, the observed d alpha n(i, i + 1), d alpha n(i, i + 2), dnn(i, i + 1), d beta n(i, i + 1) NOEs and the results from theoretical modeling, we conclude that the residues of the peptide sample alpha helical and neck regions of the Ramachandran phi, psi map with reduced conformational entropy and there is a potential for turn conformations at N and C terminal ends of the peptide. The role of reduced conformational entropy and turn potential in helix formation have been discussed. We conclude that the peptide sequence can serve as a 'folding intermediate' in the helix folding of glyceraldehyde 3-phosphate dehydrogenase.

PubMed Disclaimer

Similar articles

Publication types

Substances

LinkOut - more resources