Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000;19(3):201-13.

Oxidative mechanisms in the toxicity of chromium and cadmium ions

Affiliations
  • PMID: 10983887

Oxidative mechanisms in the toxicity of chromium and cadmium ions

S J Stohs et al. J Environ Pathol Toxicol Oncol. 2000.

Abstract

Chromium and cadmium are widely used industrial chemicals. The toxicities associated with both metal ions are well known. However, less information is available concerning the mechanisms of toxicity. The results of in vitro and in vivo studies demonstrate that both cations induce an oxidative stress that results in oxidative deterioration of biological macromolecules. However, different mechanisms are involved in the production of the oxidative stress by chromium and cadmium. Chromium undergoes redox cycling, while cadmium depletes glutathione and protein-bound sulfhydryl groups, resulting in enhanced production of reactive oxygen species such as superoxide ion, hydroxyl radicals, and hydrogen peroxide. These reactive oxygen species result in increased lipid peroxidation, enhanced excretion of urinary lipid metabolites, modulation of intracellular oxidized states, DNA damage, membrane damage, altered gene expression, and apoptosis. Enhanced production of nuclear factor-kappaB and activation of protein kinase C occur. Furthermore, the p53 tumor suppressor gene is involved in the cascade of events associated with the toxicities of these cations. In summary, the results clearly indicate that although different mechanisms lead to the production of reactive oxygen species by chromium and cadmium, similar subsequent mechanisms and types of oxidative tissue damage are involved in the overall toxicities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources