Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Aug 30;1460(1):60-74.
doi: 10.1016/s0005-2728(00)00130-4.

Chromophore reorientation during the photocycle of bacteriorhodopsin: experimental methods and functional significance

Affiliations
Free article
Review

Chromophore reorientation during the photocycle of bacteriorhodopsin: experimental methods and functional significance

M P Heyn et al. Biochim Biophys Acta. .
Free article

Abstract

Light-induced isomerization leads to orientational changes of the retinylidene chromophore of bacteriorhodopsin in its binding pocket. The chromophore reorientation has been characterized by the following methods: polarized absorption spectroscopy in the visible, UV and IR; polarized resonance Raman scattering; solid-state deuterium nuclear magnetic resonance; neutron and X-ray diffraction. Most of these experiments were performed at low temperatures with bacteriorhodopsin trapped in one or a mixture of intermediates. Time-resolved measurements at room temperature with bacteriorhodopsin in aqueous suspension can currently only be carried out with transient polarized absorption spectroscopy in the visible. The results obtained to date for the initial state and the K, L and M intermediates are presented and discussed. The most extensive data are available for the M intermediate, which plays an essential role in the function of bacteriorhodopsin. For this intermediate the various methods lead to a consistent picture: the curved all-trans polyene chain in the initial state straightens out in the M intermediate (13-cis) and the chain segment between C(5) and C(13) tilts upwards in the direction of the cytoplasmic surface. The kink at C(13) allows the positions of beta-ionone ring and Schiff base nitrogen to remain approximately fixed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources