Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Aug 30;1460(1):157-65.
doi: 10.1016/s0005-2728(00)00136-5.

Crystallographic analysis of protein conformational changes in the bacteriorhodopsin photocycle

Affiliations
Free article
Review

Crystallographic analysis of protein conformational changes in the bacteriorhodopsin photocycle

S Subramaniam et al. Biochim Biophys Acta. .
Free article

Abstract

A variety of neutron, X-ray and electron diffraction experiments have established that the transmembrane regions of bacteriorhodopsin undergo significant light-induced changes in conformation during the course of the photocycle. A recent comprehensive electron crystallographic analysis of light-driven structural changes in wild-type bacteriorhodopsin and a number of mutants has established that a single, large protein conformational change occurs within 1 ms after illumination, roughly coincident with the time scale of formation of the M(2) intermediate in the photocycle of wild-type bacteriorhodopsin. Minor differences in structural changes that are observed in mutants that display long-lived M(2), N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. These observations support a model for the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M(1)) are well approximated by one protein conformation in which the Schiff base has extracellular accessibility, while the structures of the later intermediates (M(2), N and O) are well approximated by the other protein conformation in which the Schiff base has cytoplasmic accessibility.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources