Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;56(3):719-32.
doi: 10.1111/j.0006-341x.2000.00719.x.

Multivariate continuation ratio models: connections and caveats

Affiliations

Multivariate continuation ratio models: connections and caveats

P J Heagerty et al. Biometrics. 2000 Sep.

Abstract

We develop semiparametric estimation methods for a pair of regressions that characterize the first and second moments of clustered discrete survival times. In the first regression, we represent discrete survival times through univariate continuation indicators whose expectations are modeled using a generalized linear model. In the second regression, we model the marginal pairwise association of survival times using the Clayton-Oakes cross-product ratio (Clayton, 1978, Biometrika 65, 141-151; Oakes, 1989, Journal of the American Statistical Association 84, 487-493). These models have recently been proposed by Shih (1998, Biometrics 54, 1115-1128). We relate the discrete survival models to multivariate multinomial models presented in Heagerty and Zeger (1996, Journal of the American Statistical Society 91, 1024-1036) and derive a paired estimating equations procedure that is computationally feasible for moderate and large clusters. We extend the work of Guo and Lin (1994, Biometrics 50, 632-639) and Shih (1998) to allow covariance weighted estimating equations and investigate the impact of weighting in terms of asymptotic relative efficiency. We demonstrate that the multinomial structure must be acknowledged when adopting weighted estimating equations and show that a naive use of GEE methods can lead to inconsistent parameter estimates. Finally, we illustrate the proposed methodology by analyzing psychological testing data previously summarized by TenHave and Uttal (1994, Applied Statistics 43, 371-384) and Guo and Lin (1994).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources