Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;10(4):457-65.
doi: 10.1002/1098-1063(2000)10:4<457::AID-HIPO12>3.0.CO;2-Z.

Physiological patterns in the hippocampo-entorhinal cortex system

Affiliations
Review

Physiological patterns in the hippocampo-entorhinal cortex system

J J Chrobak et al. Hippocampus. 2000.

Abstract

The anatomical connectivity and intrinsic properties of entorhinal cortical neurons give rise to ordered patterns of ensemble activity. How entorhinal ensembles form, interact, and accomplish emergent processes such as memory formation is not well-understood. We lack sufficient understanding of how neuronal ensembles in general can function transiently and distinctively from other neuronal ensembles. Ensemble interactions are bound, foremost, by anatomical connectivity and temporal constraints on neuronal discharge. We present an overview of the structure of neuronal interactions within the entorhinal cortex and the rest of the hippocampal formation. We wish to highlight two principle features of entorhinal-hippocampal interactions. First, large numbers of entorhinal neurons are organized into at least two distinct high-frequency population patterns: gamma (40-100 Hz) frequency volleys and ripple (140-200 Hz) frequency volleys. These patterns occur coincident with other well-defined electrophysiological patterns. Gamma frequency volleys are modulated by the theta cycle. Ripple frequency volleys occur on each sharp wave event. Second, these patterns occur dominantly in specific layers of the entorhinal cortex. Theta/gamma frequency volleys are the principle pattern observed in layers I-III, in the neurons that receive cortical inputs and project to the hippocampus. Ripple frequency volleys are the principle population pattern observed in layers V-VI, in the neurons that receive hippocampal output and project primarily to the neocortex. Further, we will highlight how these ensemble patterns organize interactions within distributed forebrain structures and support memory formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources