Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Aug 24;10(16):1009-12.
doi: 10.1016/s0960-9822(00)00652-7.

Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1

Affiliations
Free article

Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1

E Odintsova et al. Curr Biol. .
Free article

Abstract

The 'metastasis suppressor' CD82/KAI-1, a member of the tetraspanin superfamily of transmembrane proteins, is widely distributed in normal tissues [1], and has been shown to be suppressed in the advanced stages of various epithelial malignancies [2-6]. Although the physiological relevance of this change is unknown, in vitro data show that ectopically expressed CD82/KAI-1 can suppress tumor cell migration, a process underlying the dissemination of tumor cells in vivo [5]. The function of CD82/KAI-1 is not known and it has been proposed that association of CD82/KAI-1 with other cell-surface proteins may be pivotal in directing its biological activities [7,8]. We show here that the CD82/KAI-1 tetraspanin is directly associated with the EGF receptor (EGFR), and that ectopic expression of CD82/KAI-1 in epithelial cells specifically suppresses EGF-induced lamellipodial extensions and cell migration. In cells expressing CD82/KAI-1, the initial activation of EGFR is not affected, but subsequent desensitization of EGF-induced signaling occurs more rapidly. This attenuation is correlated with an increased rate of receptor endocytosis. These results identify CD82/KAI-1 as a new regulator of EGF-induced signaling and show that the association of EGFR with the tetraspanin is critical in EGFR desensitization.

PubMed Disclaimer

Similar articles

Cited by

Publication types