Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep 19;39(37):11177-83.
doi: 10.1021/bi000200n.

Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics

Affiliations
Review

Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics

K W Plaxco et al. Biochemistry. .

Abstract

The fastest simple, single domain proteins fold a million times more rapidly than the slowest. Ultimately this broad kinetic spectrum is determined by the amino acid sequences that define these proteins, suggesting that the mechanisms that underlie folding may be almost as complex as the sequences that encode them. Here, however, we summarize recent experimental results which suggest that (1) despite a vast diversity of structures and functions, there are fundamental similarities in the folding mechanisms of single domain proteins and (2) rather than being highly sensitive to the finest details of sequence, their folding kinetics are determined primarily by the large-scale, redundant features of sequence that determine a protein's gross structural properties. That folding kinetics can be predicted using simple, empirical, structure-based rules suggests that the fundamental physics underlying folding may be quite straightforward and that a general and quantitative theory of protein folding rates and mechanisms (as opposed to unfolding rates and thus protein stability) may be near on the horizon.

PubMed Disclaimer

LinkOut - more resources