Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Jul;12(7):435-45.
doi: 10.1016/s0898-6568(00)00096-6.

Mechanical stress-initiated signal transductions in vascular smooth muscle cells

Affiliations
Review

Mechanical stress-initiated signal transductions in vascular smooth muscle cells

C Li et al. Cell Signal. 2000 Jul.

Abstract

Mechanical force is an important modulator of cellular morphology and function in a variety of tissues, and is particularly important in cardiovascular systems. Vascular smooth muscle cell (VSMC) hypertrophy and proliferation contribute to the development of atherosclerosis, hypertension, and restenosis, where mechanical forces are largely disturbed. How VSMCs sense and transduce the extracellular mechanical signals into the cell nucleus resulting in quantitative and qualitative changes in gene expression is an interesting and important research field. Recently, it has been demonstrated that mechanical stress rapidly induced phosphorylation of platelet-derived growth factor (PDGF) receptor, activation of integrin receptor, stretch-activated cation channels, and G proteins, which might serve as mechanosensors. Once mechanical force is sensed, protein kinase C and mitogen-activated protein kinases (MAPKs) were activated, leading to increased c-fos and c-jun gene expression and enhanced transcription factor AP-1 DNA-binding activity. Interestingly, physical forces also rapidly resulted in expression of MAPK phosphatase-1 (MKP-1), which inactivates MAPKs. Thus, mechanical stresses can directly stretch the cell membrane and alter receptor or G protein conformation, thereby initiating signalling pathways, usually used by growth factors. These findings have significantly enhanced our knowledge of the pathogenesis of arteriosclerosis and provided promising information for therapeutic interventions for vascular diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources