Kinetic studies on the specificity of chelate-iron uptake in Aspergillus
- PMID: 1099079
- PMCID: PMC235804
- DOI: 10.1128/jb.123.3.837-842.1975
Kinetic studies on the specificity of chelate-iron uptake in Aspergillus
Abstract
Three strains of the fungus Aspergillus, Aspergillus quadricinctus (E. Yuill), A. fumigatus (Fresenius), and A. melleus (Yukawa), each producing different iron-chelating compounds during iron-deficient cultivation, were used for 55Fe3+ uptake measurements. Iron from chelates of the ferrichrome-type family was taken up by young mycelia of all strains tested, irrespective of the ferrichrome-type compound these strains predominantly produce in low-iron cultures. Ferrichrysin-producing strains, however, seem to favor ferrichrysin iron uptake, whereas ferrichrome, ferricrocin, and even ferrirubin showed similar iron transport properties in all of these strains. Compared to iron uptake from ferrichrome-type compounds (Km approximately 4 uM) iron uptake from fusigen revealed completely different kinetic values (Km approximately 50 to 80 muM). Iron from exogenous chelates, e.g., from coprogen produced by Neurospora crassa for ferrioxamine B produced by Streptomyces pilosus, can obviously not be taken up by Aspergillus, confirming the pronounced specificity of chelate-iron transport in fungi.
Similar articles
-
Enzymatic release of iron from sideramines in fungi. NADH:sideramine oxidoreductase in Neurospora crassa.Biochim Biophys Acta. 1977 Nov 7;500(1):27-41. doi: 10.1016/0304-4165(77)90043-5. Biochim Biophys Acta. 1977. PMID: 144535
-
Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa.Biol Met. 1988;1(1):18-25. doi: 10.1007/BF01128013. Biol Met. 1988. PMID: 2978956
-
Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid.J Bacteriol. 1984 Oct;160(1):313-8. doi: 10.1128/jb.160.1.313-318.1984. J Bacteriol. 1984. PMID: 6480558 Free PMC article.
-
Siderophores of bacteria and fungi.Microbiol Sci. 1984 Apr;1(1):9-14. Microbiol Sci. 1984. PMID: 6242877 Review.
-
Iron and infection.Microbiol Rev. 1978 Mar;42(1):45-66. doi: 10.1128/mr.42.1.45-66.1978. Microbiol Rev. 1978. PMID: 379572 Free PMC article. Review. No abstract available.
Cited by
-
Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974.Antimicrob Agents Chemother. 2009 Nov;53(11):4619-27. doi: 10.1128/AAC.00782-09. Epub 2009 Aug 31. Antimicrob Agents Chemother. 2009. PMID: 19721072 Free PMC article.
-
Antifungal Activity of Siderophore Isolated From Escherichia coli Against Aspergillus nidulans via Iron-Mediated Oxidative Stress.Front Microbiol. 2021 Nov 3;12:729032. doi: 10.3389/fmicb.2021.729032. eCollection 2021. Front Microbiol. 2021. PMID: 34803944 Free PMC article.
-
High-performance liquid chromatography of siderophores from fungi.Biol Met. 1988;1(1):9-17. doi: 10.1007/BF01128012. Biol Met. 1988. PMID: 2978959
-
Utilization of microbial siderophores in iron acquisition by oat.Plant Physiol. 1988 Jul;87(3):680-5. doi: 10.1104/pp.87.3.680. Plant Physiol. 1988. PMID: 16666207 Free PMC article.
-
Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms.J Bacteriol. 1988 Oct;170(10):4693-8. doi: 10.1128/jb.170.10.4693-4698.1988. J Bacteriol. 1988. PMID: 2971647 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources