Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Dec 15;275(50):39403-10.
doi: 10.1074/jbc.M006949200.

Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization

Affiliations
Free article

Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization

U Lenk et al. J Biol Chem. .
Free article

Abstract

In this study we demonstrate that the Deg1 degradation signal of the transcriptional repressor Matalpha2 confers compartment-specific turnover to a reporter protein. Rapid degradation of a Deg1-containing fusion protein is observed only when the reporter is efficiently imported into the nucleus. In contrast, a reporter that is constantly exported from the nucleus exhibits an extended half-life. Furthermore, nuclear import functions are crucial for both Deg1-induced degradation as well as for the turnover of the endogenous Matalpha2 protein. The conjugation of ubiquitin to a Deg1-containing reporter protein is abrogated in mutants affected in nuclear import. Obviously, the Deg1 signal initiates rapid proteolysis within the nucleoplasm, whereas in the cytosol it mediates turnover via a slower pathway. In both pathways the ubiquitin-conjugating enzymes Ubc6p/Ubc7p play a pivotal role. These observations imply that both the cellular targeting of a substrate and the compartment-specific activity of components of the ubiquitin-proteasome system define the half-life of naturally short-lived proteins.

PubMed Disclaimer

Publication types

MeSH terms