Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;301(3):459-63.
doi: 10.1007/s004419900168.

Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss)

Affiliations

Effect of fasting and refeeding on in vitro muscle cell proliferation in rainbow trout (Oncorhynchus mykiss)

B Fauconneau et al. Cell Tissue Res. 2000 Sep.

Abstract

The effects of short-term fasting and refeeding were studied on satellite cells extracted from white epaxial muscle of juvenile rainbow trout (1-3 g body weight). In vitro changes in the proliferation of satellite cells were analyzed using bromodeoxyuridine (BrdU) incorporation over a 24-h period. Proliferation in fed control fish was characterized by an initial basal proliferation rate of 5-10% BrdU-labeled nuclei x day(-1), followed by an exponential increase at a rate of +18-20% x day(-1), up to a maximum of 60-70% BrdU-labeled nuclei x day(-1). Characteristics of satellite cells extracted from starved fish, namely extraction yield, morphology, and proliferation, were different from those of fed fish. Fasting (8-10 days) completely suppressed initial proliferation of satellite cells in vitro over a period of 4 days. After this delay, proliferation resumed and changes in proliferation rates over time were similar to those of the control group. In fish fed for 4 days after an 8-day fast, the initial proliferation rate and the changes in proliferation rates over time were completely restored. These findings demonstrate that satellite cells express different behavior depending on feeding status, which could be due to the presence of different satellite cell populations.

PubMed Disclaimer