Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Aug;48(1):47-68.
doi: 10.1016/s0165-0378(00)00069-3.

Chlamydia trachomatis infection: incidence, health costs and prospects for vaccine development

Affiliations
Review

Chlamydia trachomatis infection: incidence, health costs and prospects for vaccine development

K W Beagley et al. J Reprod Immunol. 2000 Aug.

Abstract

Chlamydia trachomatis infection is now the most common sexually transmitted disease worldwide. World Health Organisation figures estimated that 89 million new cases of genital Chlamydia infections occurred in 1995, highlighting the worldwide prevalence of infections and the economic burden on healthcare delivery. A number of methods have been developed for detection of chlamydial infection, which vary in sensitivity and specificity. No single method has yet gained general acceptance and in many countries Chlamydia infections are not reported, suggesting that the above figures may be an underestimate of the problem. As yet there is no consensus as to what constitutes a protective immune response against genital Chlamydia infection. Studies in animal models have shown that cell-mediated immunity, both Th1-driven macrophage activation and cytotoxic T cell responses, as well as antibody can mediate protection at different stages of the chlamydial life cycle. A successful vaccine would probably need to elicit both a systemic cell-mediated immune response to limit/resolve established infections and a mucosal IgA response to reduce bacterial shedding and the resulting spread of infection to partners of infected individuals. The immune response to Chlamydia, either through natural infection or following immunisation, also has the potential to enhance inflammation and to act as a driving force for constant mutation in the variable regions of the major outer membrane protein. As a result a constant prevalence of infection is maintained even in an immune population through the emergence of new allelic variants. Immune responses against antigens such as the 60 kDa heat shock protein can exacerbate inflammation through molecular mimicry and must not be elicited as a result of vaccination. Thus there are many challenges for the development of a successful vaccine which must elicit immunity against multiple serovars while at the same time minimising damaging pro-inflammatory immune responses.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources