Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 22;404(3):341-51.
doi: 10.1016/s0014-2999(00)00619-1.

Heterogeneity in relaxation mechanisms in the carotid and the femoral artery of the mouse

Affiliations

Heterogeneity in relaxation mechanisms in the carotid and the femoral artery of the mouse

H M Crauwels et al. Eur J Pharmacol. .

Abstract

The participation of prostanoids, nitric oxide and non-prostanoid non-nitric oxide factors in endothelium-dependent relaxations was investigated in phenylephrine (PE)-constricted carotid and femoral arteries of C57BL6 mice. The carotid artery was more sensitive to acetylcholine as compared to the femoral artery, and cyclooxygenase inhibition did not influence the relaxation in either vessel. In the carotid artery, high doses of acetylcholine caused transient constrictions, which were abolished by indomethacin or piroxicam. In the carotid but not the femoral artery, N(omega)-nitro-L-arginine or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) enhanced PE-induced contractions enormously, suggesting that endogenous nitric oxide production is much higher in the carotid artery. While in the carotid artery all relaxation was abolished by N(omega)-nitro-L-arginine or ODQ, a residual response (34+/-5% and 74+/-4%, respectively) but with a different shape, was maintained in the femoral artery. This N(omega)-nitro-L-arginine-resistant relaxation was abolished by the combination of apamin and charybdotoxin. In both arteries, ODQ abolished relaxation to S-nitroso-N-acetyl-D-penicillamine, while N(omega)-nitro-L-arginine enhanced the sensitivity to this donor of exogenous nitric oxide. In 30 mM KCl, the relaxation to acetylcholine was abolished by N(omega)-nitro-L-arginine or ODQ in either artery. In conclusion, in the carotid artery endothelium-dependent relaxation is mediated predominantly by nitric oxide acting via cyclic GMP-dependent pathways, while in the femoral artery part of the relaxation can be attributed to a non-prostanoid non-nitric oxide factor operating via apamin/charybdotoxin-sensitive potassium channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources