Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep 15;74(1):5-10.
doi: 10.1016/s0165-2478(00)00243-1.

Dendritic cell based tumor vaccines

Affiliations
Review

Dendritic cell based tumor vaccines

M Nouri-Shirazi et al. Immunol Lett. .

Abstract

Dendritic cells (DC) constitute a unique system of cells that induce, sustain and regulate immune responses. Distributed as sentinels throughout the body, DC are poised to capture antigen (Ag), migrate to draining lymphoid organs, and, after a process of maturation, select Ag-specific lymphocytes to which they present the processed Ag, thereby inducing immune responses. DC present Ag to CD4(+) T cells which in turn regulate multiple effectors, including CD8(+) cytotoxic T cells, B cells, NK cells, macrophages and eosinophils, all of which contribute to the protective immune responses. Several key features of the DC system may be highlighted: (1) the existence of different DC subsets that share biological functions, yet display unique ones such as polarization of T cell responses towards Type 1 or Type 2 or regulation of B cell responses; (2) the functional specialization of DC according to their differentiation/maturation stages; and (3) the plasticity of DC which is determined by the microenvironment (e.g. cytokines) and may manifest as (i) the final differentiation into either DC (enhanced antigen presentation) or macrophage (enhanced antigen degradation); (ii) the induction of immunity or tolerance; and (iii) the polarization of T cell responses. Because of these unique properties, DC represent both vectors and targets for immunological intervention in numerous diseases and are optimal candidates for vaccination protocols both in cancer and infectious diseases.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources