Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Oct;267(19):5824-9.
doi: 10.1046/j.1432-1327.2000.01669.x.

Polyamines as gating molecules of inward-rectifier K+ channels

Affiliations
Free article
Review

Polyamines as gating molecules of inward-rectifier K+ channels

D Oliver et al. Eur J Biochem. 2000 Oct.
Free article

Abstract

Inward-rectifier potassium (Kir) channels comprise a superfamily of potassium (K+) channels with unique structural and functional properties. Expressed in virtually all types of cells they are responsible for setting the resting membrane potential, controlling the excitation threshold and secreting K+ ions. All Kir channels present an inwardly rectifying current-voltage relation, meaning that at any given driving force the inward flow of K+ ions exceeds the outward flow for the opposite driving force. This inward-rectification is due to a voltage-dependent block of the channel pore by intracellular polyamines and magnesium. The present molecular-biophysical understanding of inward-rectification and its physiological consequences is the topic of this review. In addition to polyamines, Kir channels are gated by intracellular protons, G-proteins, ATP and phospholipids depending on the respective Kir subfamily as detailed in the following review articles.

PubMed Disclaimer

MeSH terms

LinkOut - more resources