Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 14;407(6801):194-8.
doi: 10.1038/35025076.

Topological restriction of SNARE-dependent membrane fusion

Affiliations

Topological restriction of SNARE-dependent membrane fusion

F Parlati et al. Nature. .

Abstract

To fuse transport vesicles with target membranes, proteins of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex must be located on both the vesicle (v-SNARE) and the target membrane (t-SNARE). In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2-6), each probably contribute a single helix to form the SNARE complex that is needed for transport from endoplasmic reticulum to Golgi. This generates a four-helix bundle, which ultimately mediates the actual fusion event. Here we explore how the anchoring arrangement of the four helices affects their ability to mediate fusion. We reconstituted two populations of phospholipid bilayer vesicles, with the individual SNARE proteins distributed in all possible combinations between them. Of the eight non-redundant permutations of four subunits distributed over two vesicle populations, only one results in membrane fusion. Fusion only occurs when the v-SNARE Bet1 is on one membrane and the syntaxin heavy chain Sed5 and its two light chains, Bos1 and Sec22, are on the other membrane where they form a functional t-SNARE. Thus, each SNARE protein is topologically restricted by design to function either as a v-SNARE or as part of a t-SNARE complex.

PubMed Disclaimer

Comment in

  • The specifics of membrane fusion.
    Scales SJ, Bock JB, Scheller RH. Scales SJ, et al. Nature. 2000 Sep 14;407(6801):144-6. doi: 10.1038/35025176. Nature. 2000. PMID: 11001039 No abstract available.

Similar articles

Cited by

Publication types

MeSH terms