Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000 Sep-Oct;71(1-2):276-92.
doi: 10.1006/mgme.2000.3059.

Connective tissue growth factor: what's in a name?

Affiliations
Review

Connective tissue growth factor: what's in a name?

E E Moussad et al. Mol Genet Metab. 2000 Sep-Oct.

Abstract

Connective tissue growth factor (CTGF) is a member of the recently described CCN gene family which contains CTGF itself, cyr61, nov, elm1, Cop1, and WISP-3. CTGF is transcriptionally activated by several factors although its stimulation by transforming growth factor beta (TGF-beta) has attracted considerable attention. CTGF acts to promote fibroblast proliferation, migration, adhesion, and extracellular matrix formation, and its overproduction is proposed to play a major role in pathways that lead to fibrosis, especially those that are TGF-beta-dependent. This includes fibrosis of major organs, fibroproliferative diseases, and scarring. CTGF also appears to play a role in the extracellular matrix remodeling that occurs in normal physiological processes such as embryogenesis, implantation, and wound healing. However, recent advances have shown that CTGF is involved in diverse autocrine or paracrine actions in several other cell types such as vascular endothelial cells, epithelial cells, neuronal cells, vascular smooth muscle cells, and cells of supportive skeletal tissues. Moreover, in some circumstances CTGF has negative effects on cell growth in that it can be antimitotic and apoptotic. In light of these discoveries, CTGF has been implicated in a diverse variety of processes that include neovascularization, transdifferentiation, neuronal scarring, atherosclerosis, cartilage differentiation, and endochondral ossification. CTGF has thus emerged as a potential important effector molecule in both physiological and pathological processes and has provided a new target for therapeutic intervention in fibrotic diseases.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources