Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep 22;9(15):2223-9.
doi: 10.1093/oxfordjournals.hmg.a018913.

Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway

Affiliations

Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway

F Blondeau et al. Hum Mol Genet. .

Abstract

Myotubular myopathy (MTM1) is an X-linked disease, characterized by severe neonatal hypotonia and generalized muscle weakness, with pathological features suggesting an impairment in maturation of muscle fibres. The MTM1 gene encodes a protein (myotubularin) with a phosphotyrosine phosphatase consensus. It defines a family of at least nine genes in man, including the antiphosphatase hMTMR5/Sbf1 and hMTMR2, recently found mutated in a recessive form of Charcot-Marie-Tooth disease. Myotubularin shows a dual specificity protein phosphatase activity in vitro. We have performed an in vivo test of tyrosine phosphatase activity in Schizosaccharomyces pombe, indicating that myotubularin does not have a broad specificity tyrosine phosphatase activity. Expression of active human myotubularin inhibited growth of S.pombe and induced a vacuolar phenotype similar to that of mutants of the vacuolar protein sorting (VPS) pathway and notably of mutants of VPS34, a phosphatidylinositol 3-kinase (PI3K). In S.pombe cells deleted for the endogenous MTM homologous gene, expression of human myotubularin decreased the level of phosphatidylinositol 3-phosphate (PI3P). We have created a substrate trap mutant which shows relocalization to plasma membrane projections (spikes) in HeLa cells and was inactive in the S.pombe assay. This mutant, but not the wild-type or a phosphatase site mutant, was able to immunoprecipitate a VPS34 kinase activity. Wild-type myotubularin was also able to directly dephosphorylate PI3P and PI4P in vitro. Myotubularin may thus decrease PI3P levels by down-regulating PI3K activity and by directly degrading PI3P.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources