Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2000 Aug 15;1459(2-3):291-8.
doi: 10.1016/s0005-2728(00)00157-2.

Mitochondrial electron transfer in the wheat pathogenic fungus Septoria tritici: on the role of alternative respiratory enzymes in fungicide resistance

Affiliations
Free article
Comparative Study

Mitochondrial electron transfer in the wheat pathogenic fungus Septoria tritici: on the role of alternative respiratory enzymes in fungicide resistance

C Affourtit et al. Biochim Biophys Acta. .
Free article

Abstract

Certain phytopathogenic fungi are able to express alternative NADH- and quinol-oxidising enzymes that are insensitive to inhibitors of the mitochondrial respiratory Complexes I and III. To assess the extent to which such enzymes confer tolerance to respiration-targeted fungicides, an understanding of mitochondrial electron transfer in these species is required. An isolation procedure has been developed which results in intact, active and coupled mitochondria from the wheat pathogen Septoria tritici, as evidenced by morphological and kinetic data. Exogenous NADH, succinate and malate/glutamate are readily oxidised, the latter activity being only partly (approx. 70%) sensitive to rotenone. Of particular importance was the finding that azoxystrobin (a strobilurin fungicide) potently inhibits fungal respiration at the level of Complex III. In some S. tritici strains investigated, a small but significant part of the respiratory activity (approx. 10%) is insensitive to antimycin A and azoxystrobin. Such resistant activity is sensitive to octyl gallate, a specific inhibitor of the plant alternative oxidase. This enzyme, however, could not be detected immunologically. On the basis of the above findings, a conceptual mitochondrial electron transfer chain is presented. Data are discussed in terms of developmental and environmental regulation of the composition of this chain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources