Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul-Aug;2(4):300-5.
doi: 10.1038/sj.neo.7900094.

Mutation and expression of the DCC gene in human lung cancer

Affiliations

Mutation and expression of the DCC gene in human lung cancer

T Kohno et al. Neoplasia. 2000 Jul-Aug.

Abstract

Chromosome 18q is frequently deleted in lung cancers, and a common region of 18q deletions was mapped to chromosome 18q21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs) and 32 non-small cell lung carcinomas (NSCLCs), to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24%) of the 46 cell lines, and the incidence of DCC expression was significantly higher in SCLCs (7/14, 50%) than in NSCLCs (4/32, 13%) (P = .01, Fisher's exact test). Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE) feature.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Expression of the DCC gene detected by RT-PCR analysis. Primers designed to amplify the 3′-portion of DCC cDNA (nucleotides 3951–4375 of Genbank NM 005215) were used GAPDH was analyzed to standardize the RNA amount of each sample.

Similar articles

Cited by

References

    1. Shiseki M, Kohno T, Nishikawa R, Sameshima Y, Mizoguchi H, Yokota J. Frequent allelic losses on chromosome 2q, 18q, and 22q in advanced non-small cell lung carcinoma. Cancer Res. 1994;54:5643–5648. - PubMed
    1. Shiseki M, Kohno T, Adachi J, Okazaki T, Otsuka T, Mizoguchi H, Noguchi M, Hirohashi S, Yokota J. Comparative allelotype of early and advanced stage non-small cell lung carcinomas. Gene Chromosomes Cancer. 1996;17:71–77. - PubMed
    1. Testa JR, Siegfried JM, Liu Z, Hunt JD, Feder MM, Litwin S, Zhou JY, Taguchi T, Keller SM. Cytogenetic analysis of 63 non-small cell lung carcinomas: recurrent chromosome alterations amid frequent and widespread genomic upheaval. Genes Chromosomes Cancer. 1994;11:178–194. - PubMed
    1. Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Reichel M, Just K, du Manoir S, Cremer T, Dietel M, Ried T. Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res. 1997;57:2331–2335. - PubMed
    1. Kawanishi M, Kohno T, Otsuka T, Adachi J, Sone S, Noguchi M, Hirohashi S, Yokota J. Allelotype and replication error phenotype of small cell lung carcinoma. Carcinogenesis. 1997;18:2057–2062. - PubMed

Publication types