Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr;32(3):223-37.
doi: 10.1016/s0968-4328(00)00043-3.

Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly

Affiliations
Review

Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly

D E Birk. Micron. 2001 Apr.

Abstract

Type V collagen is a quantitatively minor fibrillar collagen with a broad tissue distribution. The most common type V collagen isoform is alpha1(V)(2) alpha2(V) found in cornea. However, other isoforms exist, including an [alpha1(V)alpha2(V)alpha3(V)] form, an alpha1(V)(3) homotrimer and hybrid type V/XI forms. The functional role and fibrillar organization of these isoforms is not understood. In the cornea, type V collagen has a key role in the regulation of initial fibril assembly. Type I and type V collagen co-assemble into heterotypic fibrils. The entire triple-helical domain of the type V collagen molecules is buried within the fibril and type I collagen molecules are present along the fibril surface. The retained NH(2)-terminal domains of the type V collagen are exposed at the surface, extending outward through the gap zones. The molecular model of the NH(2)-terminal domain indicates that the short alpha helical region is a flexible hinge-like region allowing the peptide to project away from the major axis of the molecule; the short triple-helical regions serve as an extension through the hole zone, placing the tyrosine-rich domain at the surface. The assembly of early, immature fibril intermediates (segments) is regulated by the NH(2)-terminal domain of type V collagen. These NH(2)-terminal domains alter accretion of collagen molecules onto fibrils and therefore lateral growth. A critical density would favor the initiation of new fibrils rather than the continued growth of existing fibrils. Other type V collagen isoforms are likely to have an important role in non-cornea tissues. This role may be mediated by supramolecular aggregates different from those in the corneal stroma or by an alteration of the interactions mediated by tissue-specific type V collagen domains generated by different isoforms or aggregate structures. Presumably, the aggregate structure or specific domains are involved in the regionalization of fibril-associated macromolecules necessary for the tissue-specific regulation of later fibril growth and matrix assembly stages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources