Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000;14(19):1793-800.
doi: 10.1002/1097-0231(20001015)14:19<1793::AID-RCM95>3.0.CO;2-Q.

Electron capture dissociation of singly and multiply phosphorylated peptides

Affiliations

Electron capture dissociation of singly and multiply phosphorylated peptides

A Stensballe et al. Rapid Commun Mass Spectrom. 2000.

Abstract

Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) mass spectra of these species. ECD of multiply protonated phosphopeptide ions generated mainly c- and z(.)-type peptide fragment ion series. No loss of water, phosphate groups or phosphoric acid from intact phosphopeptide ions nor from the c and z(.) fragment ion products was observed in the ECD spectra. ECD enabled complete or near-complete amino acid sequencing of phosphopeptides for the assignment of up to four phosphorylation sites in peptides in the mass range 1400 to 3500 Da. Nano-scale Fe(III)-affinity chromatography combined with nano-electrospray FTMS/ECD facilitated phosphopeptide analysis and amino acid sequencing from crude proteolytic peptide mixtures.

PubMed Disclaimer

Publication types

LinkOut - more resources