Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Sep;9(9):895-903.

Empirical Bayes adjustments for multiple results in hypothesis-generating or surveillance studies

Affiliations
  • PMID: 11008906

Empirical Bayes adjustments for multiple results in hypothesis-generating or surveillance studies

K Steenland et al. Cancer Epidemiol Biomarkers Prev. 2000 Sep.

Abstract

Traditional methods of adjustment for multiple comparisons (e.g., Bonferroni adjustments) have fallen into disuse in epidemiological studies. However, alternative kinds of adjustment for data with multiple comparisons may sometimes be advisable. When a large number of comparisons are made, and when there is a high cost to investigating false positive leads, empirical or semi-Bayes adjustments may help in the selection of the most promising leads. Here we offer an example of such adjustments in a large surveillance data set of occupation and cancer in Nordic countries, in which we used empirical Bayes (EB) adjustments to evaluate standardized incidence ratios (SIRs) for cancer and occupation among craftsmen and laborers. For men, there were 642 SIRs, of which 138 (21%) had a P < 0.05 (13% positive with SIR > 1.0 and 8% negative with SIR < or = 1.0) when testing the null hypothesis of no cancer/occupation association; some of these were probably due to confounding by nonoccupational risk factors (e.g., smoking). After EB adjustments, there were 95 (15%) SIRs with P < 0.05 (10% positive and 5% negative). For women, there were 373 SIRs, of which 37 (10%) had P < 0.05 before adjustment (6% positive and 4% negative) and 13 (3%) had P < 0.05 after adjustment (2% positive and 1% negative). Several known associations were confirmed after EB adjustment (e.g., pleural cancer among plumbers, original SIR 3.2 (95% confidence interval, 2.5-4.1), adjusted SIR 2.0 (95% confidence interval, 1.6-2.4). EB can produce more accurate estimates of relative risk by shrinking imprecise outliers toward the mean, which may reduce the number of false positives otherwise flagged for further investigation. For example, liver cancer among chimney sweepers was reduced from an original SIR of 2.2 (range, 1.1-4.4) to an adjusted SIR of 1.1 (range, 0.9-1.4). A potentially important future application for EB is studies of gene-environment-disease interactions, in which hundreds of polymorphisms may be evaluated with dozens of environmental risk factors in large cohort studies, producing thousands of associations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources