Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Oct;279(4):H2006-12.
doi: 10.1152/ajpheart.2000.279.4.H2006.

Evidence for nitroxidergic innervation in monkey ophthalmic arteries in vivo and in vitro

Affiliations
Free article

Evidence for nitroxidergic innervation in monkey ophthalmic arteries in vivo and in vitro

K Ayajiki et al. Am J Physiol Heart Circ Physiol. 2000 Oct.
Free article

Abstract

In anesthetized monkeys, electrical stimulation (ES) of the pterygopalatine or geniculate ganglion dilated the ipsilateral ophthalmic artery (OA). The induced vasodilatation was unaffected by phentolamine but potentiated by atropine. Intravenous N(G)-nitro-L-arginine (L-NNA) abolished the response, which was restored by L-arginine. Hexamethonium-abolished vasodilator responses induced solely by geniculate ganglionic stimulation. The L-NNA constricted OA; L-arginine reversed the effect. Destruction of the pterygopalatine ganglion constricted the ipsilateral artery. Helical strips of OA isolated under deep anesthesia from monkeys, denuded of endothelium, responded to transmural ES with relaxations, which were abolished by tetrodotoxin and L-NNA but were potentiated by atropine. It is concluded that neurogenic vasodilatation of monkey OA is mediated by nerve-derived nitric oxide (NO), and the nerve is originated from the ipsilateral pterygopalatine ganglion that is innervated by cholinergic neurons from the brain stem via the geniculate ganglion. The OA appears to be dilated by mediation of NO continuously liberated from nerves that receive tonic discharges from the vasomotor center. Acetylcholine liberated from postganglionic cholinergic nerves would impair the release of neurogenic NO.

PubMed Disclaimer

Publication types

LinkOut - more resources