Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000;26(3):281-9.
doi: 10.1055/s-2000-8472.

Hyperhomocysteinemia, vascular pathology, and endothelial dysfunction

Affiliations
Review

Hyperhomocysteinemia, vascular pathology, and endothelial dysfunction

C van Guldener et al. Semin Thromb Hemost. 2000.

Abstract

Hyperhomocysteinemia has been associated with premature atherothrombotic vascular disease. It is not known whether hyperhomocysteinemia induces a distinct type of vascular disease. Its interaction, if any, with traditional risk factors also remains unclear. The pathophysiological mechanisms linking hyperhomocysteinemia to vascular disease have been extensively studied in vitro and in animals. From these studies, it has been suggested that homocysteine limits the bioavailability of nitric oxide (NO), increases oxidative stress, stimulates smooth cell proliferation, and alters elastic wall properties. The relevance of these proposed mechanisms in vivo is unclear, because clinical studies have yielded controversial results with regard to the relation between plasma homocysteine levels and indices of endothelial function, such as brachial artery flow-mediated vasodilatation and plasma levels of endothelium-derived marker proteins. Up till now, there have been no controlled data on the effects of homocysteine-lowering treatment on vascular function or clinical end points. The precise mechanisms (if any) by which homocysteine mediates its adverse vascular effects are in fact unknown but may relate to impaired endothelial and smooth muscle cell function.

PubMed Disclaimer

MeSH terms