Adhesive secretions in the Platyhelminthes
- PMID: 11013756
- DOI: 10.1016/s0065-308x(01)48006-7
Adhesive secretions in the Platyhelminthes
Abstract
This review is the first to draw together knowledge about bioadhesives secreted by a group of parasites. Mechanisms of mechanical attachment are well known among parasites, but some can also attach to host surfaces by chemical means using a thin layer of adhesive material secreted at the parasite-host interface. Attachment by adhesives to living surfaces has not been studied in detail previously. A significant volume of research has determined much about the chemistry and nature of bioadhesives secreted by various marine macroinvertebrates from different phyla for attachment to inert substrates. Mussels and barnacles are sessile and adhere permanently, whereas starfish display temporary but firm adhesion during locomotion, feeding and burrowing. We focus on the Platyhelminthes that comprises the largely free-living Turbellaria and the wholly parasitic Monogenea, Cestoda, Digenea and Aspidogastrea. The term tissue adhesion is introduced to describe attachment by adhesives to epithelial surfaces such as fish epidermis and the lining of the vertebrate gut. These living layers regenerate rapidly, secrete mucus, are a site for immune activity and are therefore especially hostile environments for organisms that inhabit them, presenting a significant challenge for adhesion. Not all platyhelminths adhere to living surfaces and types of adhesion to inert substrates by the free-living turbellarians are also reviewed. Tissue adhesion is particularly well exemplified by monopisthocotylean monogeneans, parasites that are especially mobile as larvae, juveniles and adults on the epidermis of the body and gill surfaces of fish. These monogeneans secrete adhesives from the anterior end when they move from site to site, but some have secondarily developed adhesives at the posterior end to supplement or replace mechanical attachment by hooks and/or by suction. The temporary but tenacious anterior adhesives of monogeneans display remarkable properties of instant attachment to and detachment from their host fish surfaces. In contrast to the mobility of turbellarians and monopisthocotylean monogeneans and the simplicity of their direct life cycles, the largely endoparasitic Cestoda and Digenea are considered to be less mobile as adults. The complex cestode and digenean life cycles, involving intermediate hosts, place different demands on their various stages. Diverse, mostly anterior, gland cells in larvae, metacestodes and adults of the true tapeworms (Eucestoda), and in larval and adult Gyrocotylidea and Amphilinidea are reviewed. Conspicuous gland cells, mostly but not exclusively at the anterior end, in miracidia, cercariae and adults of digeneans and in cotylocidia and adults of aspidogastreans are also reviewed. Unlike turbellarians and monogeneans, accounts of unequivocal adhesive secretions in the Cestoda, but especially in the Digenea and Aspidogastrea, are relatively rare. The primary purpose of many conspicuous glands in the different stages of these mostly endoparasitic flatworms is for penetration into, or escape from, different hosts in their life cycle. We provide a detailed review of current knowledge about adhesion (in the sense of a thin layer of chemical material) in the Platyhelminthes including uses among eggs, larval, juvenile and adult stages. Information on structure, morphology and ultrastructure of the various adhesive systems that have been described is reviewed. Application of the 'duo gland' model is discussed. Comparisons are made between the little that is known about the chemistry of flatworm adhesives and the significant knowledge of the chemical nature of other invertebrate bioadhesives, especially those from marine macroinvertebrates. The potential importance of adhesives in parasitism is discussed. (ABSTRACT TRUNCATED)
Similar articles
-
The origins of parasitism in the platyhelminthes.Int J Parasitol. 1994 Dec;24(8):1099-115. doi: 10.1016/0020-7519(94)90185-6. Int J Parasitol. 1994. PMID: 7729971
-
Reproduction and host-location among the parasitic platyhelminthes.Int J Parasitol. 1997 Jun;27(6):705-14. doi: 10.1016/s0020-7519(97)00012-x. Int J Parasitol. 1997. PMID: 9229253 Review.
-
Host-specificity of monogenean (platyhelminth) parasites: a role for anterior adhesive areas?Int J Parasitol. 2000 Mar;30(3):305-20. doi: 10.1016/s0020-7519(00)00006-0. Int J Parasitol. 2000. PMID: 10719124 Review.
-
A common origin of complex life cycles in parasitic flatworms: evidence from the complete mitochondrial genome of Microcotyle sebastis (Monogenea: Platyhelminthes).BMC Evol Biol. 2007 Feb 2;7:11. doi: 10.1186/1471-2148-7-11. BMC Evol Biol. 2007. PMID: 17270057 Free PMC article.
-
Preliminary characterisation and extraction of anterior adhesive secretion in monogenean (platyhelminth) parasites.Folia Parasitol (Praha). 2002;49(1):39-49. doi: 10.14411/fp.2002.010. Folia Parasitol (Praha). 2002. PMID: 11993550
Cited by
-
Sticking Together an Updated Model for Temporary Adhesion.Mar Drugs. 2022 May 27;20(6):359. doi: 10.3390/md20060359. Mar Drugs. 2022. PMID: 35736161 Free PMC article.
-
Ultrastructural features of the tegumental surface of a new metacercaria, Nematostrigea sp. (Trematoda: Strigeidae), with a search for potential taxonomically informative characters.Syst Parasitol. 2010 Jan;75(1):59-73. doi: 10.1007/s11230-009-9207-5. Syst Parasitol. 2010. PMID: 20012519
-
Mechanism of adhesion and detachment at the anterior end of Neoheterocotyle rhinobatidis and Troglocephalus rhinobatidis (Monogenea: Monopisthocotylea: Monocotylidae).Parasitol Res. 2004 Sep;94(2):91-5. doi: 10.1007/s00436-004-1171-z. Parasitol Res. 2004. PMID: 15293044
-
Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus.Biology (Basel). 2022 Oct 20;11(10):1538. doi: 10.3390/biology11101538. Biology (Basel). 2022. PMID: 36290441 Free PMC article.
-
Topography and ultrastructure of the tegument of Deropristis inflata Molin, 1859 (Digenea: Deropristidae), a parasite of the European eel Anguilla anguilla (Osteichthyes: Anguillidae).Parasitol Res. 2013 Feb;112(2):517-28. doi: 10.1007/s00436-012-3162-9. Epub 2012 Oct 7. Parasitol Res. 2013. PMID: 23052788
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources
Miscellaneous