Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:54:439-61.
doi: 10.1146/annurev.micro.54.1.439.

Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress

Affiliations
Review

Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress

O Carmel-Harel et al. Annu Rev Microbiol. 2000.

Abstract

The glutathione- and thioredoxin-dependent reduction systems are responsible for maintaining the reduced environment of the Escherichia coli and Saccharomyces cerevisiae cytosol. Here we examine the roles of these two cellular reduction systems in the bacterial and yeast defenses against oxidative stress. The transcription of a subset of the genes encoding glutathione biosynthetic enzymes, glutathione reductases, glutaredoxins, thioredoxins, and thioredoxin reductases, as well as glutathione- and thioredoxin-dependent peroxidases is clearly induced by oxidative stress in both organisms. However, only some strains carrying mutations in single genes are hypersensitive to oxidants. This is due, in part, to the redundant effects of the gene products and the overlap between the two reduction systems. The construction of strains carrying mutations in multiple genes is helping to elucidate the different roles of glutathione and thioredoxin, and studies with such strains have recently revealed that these two reduction systems modulate the activities of the E. coli OxyR and SoxR and the S. cerevisiae Yap1p transcriptional regulators of the adaptive responses to oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources